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Abstract —In the quest to maximize the scientific return of Since it may be a long time before manned missions to other
future robotic missions, it is imperative that our rovers beplanets or planetary bodies become a reality, it is necessary
capable of determining the importance of the science theyo design the robotic explorers we do send to be astute and
collect so that they may prioritize the acquisition and re-meticulous observers with the ability to mimic the work of
lay of that data. As an important step in this process, wehuman geologists and scientists as nearly as possible. Rovers
present an automated technique to allow a rover to classifynust be able to understand the purpose behind their explo-
the shape and other geologic characteristics of rocks fromation, to determine how best to accomplish that purpose, and,
two-dimensional photographic images and three-dimensionahost basic of all, to make judgements about the world they
stereographically produced data. Experiments were conview and to categorize that world in ways which will help
ducted in the Matlab environment using images returned bythem to achieve their goals. To this end, a rover must become
JPL's Mars Pathfinder mission. a ‘robotic geologist, not merely seeing rocks and surface fea-

tures, but understanding, characterizing, and studying them.
Our method begins by first segmenting the rocks from the

background using a combination of image intensity andOne important and geologically useful feature of rocks is their
height data. Various metrics are then used to classify the renherent shape. The shape of a rock is a complex property
gion’s sphericity, roundness, and other geometric propertieswhich is oftentimes difficult to describe precisely. However,
Preliminary experiments to determine the most useful meta great deal of geological work has been performed classify-
rics were conducted by characterizing the two-dimensionalng and categorizing the general appearance of microscopic
rock shape while the three-dimensional shape was later stugbarticle grains with respect to various concrete properties [1],
ied with metrics derived from these two-dimensional tech-[6], [9], [13] [18], and the same basic concepts remain appli-
nigues. cable even when scaled to the macroscopic realm of Martian
rocks. In particular, the concepts of roundness and sphericity
Seven measures were developed and implemented. The pejrovide indicative measures of a rock’s shape which might

formance of each measure was characterized by analyzinge used by a rover to obtain valuable information about the
images from the Pathfinder mission and ranking the rocks acspecimen’s geologic origins and history [3], [15].

cording to the measured properties. Combined, the measures

would provide a tool by which an automated rover could dis- Roundnesss a measure which indicates the sharpness of an
cover a greater amount of information about the data it col-object’s corners and the angularity of its edges. The accepted
lects, leading to a more productive mission. quantifiable definition of this property, attributed to Wadell
(1932), involves finding the ratio of the average radius of cur-
vature of the corners to the radius of the largest inscribed
circle. In the past, if this measure was desired there were
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2-D ANALYSIS
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Figure 1: A flow chart of the two-dimensional analysis of an iméae The process begins with the segmentation of the rocks
from the image backgroun(b) using the plane-fitted range datf). Outlines of the rocks are then found via edge detection

(c). These outlines are next used to calculate the two-dimensional angularity of the rocks through the modified corner-finding
algorithm described below. Ellipses are also fit to the outlitdsby an analytic least-squares fitting method. Finally, the
sphericity, eccentricity, and ellipse-fitting error can be calculated from the fit ellipses. The entire process requires less than 2
minutes per image running in unoptimized Matlab code on a Sun Ultra 60.

til the maximum inscribed circle was found [15]. Obviously sphericity.

this process was time-consuming and laborious. However,

we present instead an automatic method of calculating an edt was our objective to conceive the methods by which an
timate of the relative roundness of a rock which involves theautomated rover could calculate both the roundness and the
calculation of the average maximum peak angle of certain insphericity of the rocks in an image using only the two-
scribed triangles. Not only is this method automated, but itdimensional images and stereographic range data. With these

can also Conceivab|y obtain a precision which human estimaChal'aCteriStiCS, it would be possible for the rover to estimate
tion and categorization hitherto could not. important information, such as how far the rock had travelled

from its source, the direction of the fluid flow, and whether
Sphericity refers to larger scale shape characteristics tharthe rock was of the same general age as those surrounding it.
roundness. Sphericity identifies how well a particle or rockWe hoped by this process to grant the rover a better under-
approaches a truly spherical shape. It was again Wadell whetanding of the region it studied and in that way increase the
defined a measure for sphericity. Wadell's sphericitiy in- scientific return of the mission.
volved the assumption that the rock was a regular triaxial el-
lipsoid and the calculation of the three perpendicular axes of
that ellipsoid, dL, dl, and dS, being the longest, intermediate, 2. METHODS
and shortest dimensions, respectively. The Wadell sphericity

was then defined as: Rock Segmentation

Y = ¢ dsdy (1) Our first task was to use the three-dimensional stereographic
= 3 7

range data to segment the rocks in the image from the back-
ground. We used the method described in [11] which we

d and Folk dified Wadell's definition. devel briefly overview here. The range data that we used contained
Sneed and Folk (1958) modified Wadell's definition, deve “the x, y, and z coordinates of every pixel in the image based

opipg what is known as the maximum projection sphericity 5, 5, arbitrary camera-based coordinate system. In order
which we use here to obtain the actual height of the rocks above the ground,

& it was necessary to use a least squares plane-fitting method
_ 3
Yp = iLd;

(2)  such as the one described in [14]. The plane was initially
fit to every point in the image, and successive iterations were
It is this measure that we will hereafter refer to simply asthen performed by rejecting those points whose distance from



the plane was greater than three standard deviations from thmatrix form this constraint takes the foraT Ca = 1 where
mean. In this way, the plane was fit as closely as possible to _ -

the points nearest to the mean height in the image, which we 0 0 2000
assumed to be a good indication of ground height. Having ob- 0 -1.00 00
tained this more or less topographical map of the image, the 2.0 0000
tops of rocks were next identified, being those regions whose ¢=10 0 0000
neighbors were all lower than the prospective top. Those re- 00 0000
gions whose neighbors were both above and below them were 0 0 0000
labelled as the sides of rocks, and, of course, minimums were L0 0 000 0]

labelled as bottoms. The rocks were in this way reconstructed S S
. . . ) and the minimization problem becomes to minimize:
from the three-dimensional stereographic data with the tops

being combined yvith side; until a t_)ottom regioq was encoun- £ =|| Da ||?

tered. For more information on this segmentation technique,

please see [11]. subject to the above constraint, wherd) =
[z xy ... an ]T is the n x 6 design matrix.

Two-Dimensional Shape Characterization Through the use of a Lagrangian variable and differ-

We began by first characterizing the two-dimensional shapegntlatlon a simultaneous system of equations can then be

of the rocks and later modified or revised our methods forObtaInEd

three-dimensions as appropriate. The general procedure we

developed for two-dimensional analysis (Figure 1) was to first 9Sa — \Ca
obtain an outline of each segmented rock from the output of T

the rock segmentation module described above using simple a’Ca=1
edge-finding techniques. Next, the least-squares best-fitting

ellipse was calculated for the data points on the outline of thavhereS = DT D. Thus, an eigensystem has been obtained
rock, and the ellipse-fitting error as well as the eccentricitywhich can be eaily solved. The final step is to note that the
of the fit ellipse was reported. Finally, we applied a modi- eigensystem actually yields 6 eigenvalue-eigenvector pairs,
fied corner-finding algorithm to determine the angularity or but as Fitzgibbon, Pilu, and Fisher prove, only one of these
roundness of the rock. The results were then recorded fopairs will have a positive\ and therefore yield a true lo-
comparison and spot-checked for accuracy by expert geoloeal minimum. For a more detailed discussion of the ellipse-
gists. specific fitting problem, please see [7] or [8].

(5)

Ellipse Fitting —The ellipse fitting was performed by Matlab Having obtained the fitted ellipses, we then calculate their
code originally produced by Fitzgibbon, Pilu, and Fisher [8] geometric eccentricity which can be defined as the ratio of
and adapted to our specific requirements. The algorithm fothe semi-minor axis of the ellipse to the semi-major axis.
the fit is analytic, rather than iterative like the majority of its This measure is in fact a two-dimensional cousin of the three-
predecessors, and so is computationally inexpensive. dimensional sphericity previously discussed, providing infor-

o _ o _ . mation on how well the rock approximates a circle.
To begin with, a general conic section in two-dimensions can

be represented as: The other metric which we obtained by fitting ellipses to the
) ) rock was the error of fit. This was calculated by summing the
F(a,x) =a-x=ar”+bry+cy"+dr+ey+f =0 (3)  gquared distance from each rock boundary point to the closest
point on the ellipse. Due to the fact that finding the perpen-
- dicular ellipse-point distance required solving a higher order
[ ? oxy Yy oxoy 1 ] . F(a,x;) then represents polynomial and as such was computationally expensive, we
the algebraic distance of the poifit;,y;) to the conic de- developed a slightly different distance measure. The distance
fined byF(a,x) = 0. Minimizing the sum of the squares of between a data point and the ellipse was taken to be the dis-
these distances for all N data points, yields the equation:  tance between the data point and a point on the ellipse which
N rested on the ray originating from the ellipse center and pass-
D(a) = ZF(%)2 @) ing through th_e data pomt. (Figure 2). This method of cal-
P culating the ellipse-point distance allowed us to use a purely
analytic method of distance calculation and not have to revert
Now, in order to specifically fit an ellipse to the data insteadto iterative method’s such as the Gauss-Newton process.
of a general conic section, a constraint must be applied to
the minimization problem. While numerous constraints haveRoundness Calculation Fhe roundness of each rock was
been proposed in the past [4] [10] [21], Fitzgibbon, Pilu, andnext obtained, again using only the boundary points obtained
Fisher setdac — b*> = 1, thus forcing the discriminant to through segmentation and the simple edge-finding technique.
be negative and creating an ellipse specific minimization. InThe general concept of our roundness measure is based upon

wherea:[abcdef]T and x =



greater a rock’s roundness in terms of our measure, the more
angular and rough its edges could be said to be.

Closest Point on Ellipse
°
Least Squares Fit Ellipse

°
Rock Data Points

Figure 2: The distance between a data point and a fit eIIipsePI_
is shown calculated along a ray emanating from the ellipse’s
center and passing through the data point.

Figure 3: The calculation of the estimated curvature at point
the algorithm developed by [5] to detect corners of high- P is shown. Triangles are inscribed usifty as one of the
angularity in images. vertices and points betwed? + « and P; &+ 3 as the other

two. The maximum possible vertex angle is taken to be the
Assuming the boundary points are labelled in the clockwiseestimated curvature dt;.
direction starting from some arbitrary point, we wish to esti-
mate t.he curvature at a particular pofft To dq this, NUMET * Three Dimensional Shape Characterization
ous triangles are fit with the apex of each triangle resting at
P;. The two remaining vertices of the triangle are positionedAfter completing the two-dimensional analyses, our next step
one to either side of?, and are moved to various distances. was to implement similar methods for the more complex three
Thus, we have point®, and P;, where for two predefined dimensional case (Figure 6). Once again our procedure began

integer constants and3 by segmenting the rocks from the background image. Then
using the topographical-like data obtained through the plane-

h<i—-a j>it+a fitting method described above, an ellipsoid was fit to the

h>i—-03 j<i+pf points in three dimensions. An analytic solution to this prob-

lem was not feasible, so we implemented an iterative mini-
mization solution to the least squares fitting problem. After

the ellipsoid was fit and the sphericity and other measures
were acquired from it, the data was next approximated with a
b-spline surface. This surface provided the continuity neces-
sary for the calculation of the second derivatives of the data,
providing us with a novel metric for the three-dimensional

After some early experimentation, it was found thatvifvas
set to 2 and3 was set to 9, the most useful results could be
obtained.

For all possible combinations of h and j within these con-
straints, the angl€hij was then calculated using the Law of

Cosines: . .
a2 + b? — relative angularity of the rock.
Lhij = arccos o (6)

. ¢ Ellipsoid Fitting — Unable to suitably generalize to three-
witha =|| Py — P |, b =|| P; — P; ||, ande =[| P, = gimensions the ellipse-specific fitting method utilized for the
Pj ||. PointP;’s estimated curvature was then taken to be theyy._gimensional shape characterizations, we turned instead
maximum possible’ hij for all possibleh and; (Figure 3). to an iterative solution. After researching the merits and lim-

. . : itations of several different techniques [16] [22] [23], we fi-
Having found an estimated curvatuge, at every point on the o :

; L nally settled on a form of Powell minimization [19], which

boundary, we next examined the distribution of these values, . . .

%opeared to be the least computationally time-consuming

We defined the final roundness of each rock as the standartechnique and the most aptly suited to the data we had avail-

deviation of the estimated curvature at each point. Thus for a
. ) able.
rock with N boundary points:

I The backbone of Powell's method for multidimensional func-

L 1 I tion minimization is actually the one-dimensional minimiza-
Raza = N—1 Z(pi =7) ) tion procedure known as Brent’s method or inverse parabolic
=t interpolation. To utilize Brent's method, an initial coarse
with 5 equal to the average of the curvature at figoints. bracketing of the minimum is first accomplished through a

naive downhill searching algorithm (Figure 4). This simple
This measure provided a relative angularity scale. For insearch ensures that a minimum is located between the three
stance, a perfectly round, circular object would rate a zero orabscissa points, b, andc, which are its output. The key as-
this roundness scale, while any deviations, points, or jaggedumption of Brent’s method is that given a sufficiently smooth
edges would serve to increase the rock’s roundness. Thus, ttend continuous function, it will most likely behave much like



f(a
f(b)

i e H(A,B) = max(h(A,B),h(B,A)) =h(A,B)

Figure 4: The figure depicts the initial coarse bracketing of

a function minimum. Points andb are first randomly cho-  Figure 5: The Hausdorff distance between two sEt64, B).

sen, and increasing values are then guessed in a downhill This distance is often used in image processing tasks, and was
direction until the function stops decreasing and begins to inhere considered as a distance metric for the ellipsoid fitting.
crease.

dorff distancerom set A to setB is defined as

a parabola near the minimum. As such, if three points are h(A, B) = max(min || a — b ||) 9)

fit to a parabola, in this case those points initially being the acA beB

f(a), f(b), and f(c) calculated above, the minimum of that _ o ) o
parabola should be extremely close to the minimum of thel his is the unidirectional Hausdorff distance. The bidirec-
function. Using this concept, as well as a more naive putional version which tells the distantetweertwo point sets
robust simple golden section search [19], Brent's method idFigure 5) is simply defined as:

able.tq narrow in on the function minimum up to an arbitrary Dy = max(h(A, B), h(B, A)); (10)
precision.

As such, all that is required of Powell's method is to chooseBoth distance metrics held particular advantages to our task.
the directions of minimization in a way which requires the Sincé we had at most semi-spherical data, being that sur-
smallest possible number of iterations. This is accomplished@ce of the rock which was facing the camera, the Haussdorff
through the use of conjugate directions which Powell first un-distance would attempt to fit an ellipsoid enclosing this sur-
derstood and implemented [19]. Powell’'s method then simplyface. The data points would be somewhere near the center
iterates, calling Brent's method to minimize the function in Of the ellipsoid. This would enable us to fit an entire ellip-

these conjugate directions until a multidimensional functionS0id to the data and obtain reasonably good estimations of
minimization is accomplished. its three-dimensional axes. The sum of the squares distance

on the other hand would fit one face of the ellipsoid to the
In our particular case of ellipsoid fitting, two different dis- rock and then interpolate where the rock might have been, fit-
tance metrics to minimize were implemented. The first ofting an ellipsoid much larger than the area of the actual data
these, known a®s was simply the sum of the squared dis- points. However, the part of the ellipsoid which was actu-
tances from the rock data points, z, . ..z to the closest ally nearest to the data points would be fit directly to them
point on the prospective ellipsoid , e, . .. en: and would achieve an effect much more like that used in the
two-dimensional characterizations. For this reason, for its
N faster computation time, and due to the fact that the sum of
Ds = Z |z — e ||? (8) the squares distance provided a better idea of the data’s true
i=1 shape, the metric first described was chosen.

Thus, an ellipsoid was fit to the data points by applying Pow-
As in the two-dimensional case, the poiptvas estimated by ell's method to minimize the sum of the squared distance be-
finding the intersection of the ellipsoid and the ray originating tween the rock data points and the ellipsoid. Nine parameters
from the center of the ellipsoid and passing through the datavere used to define the ellipsoid as per the parametric equa-
pointx;. This, again, was done in order to increase computation:

tional efficiency and to utilize an analytic distance ratherthan . a cos(u) cos(v) D
one which would require iteration. y | = RiRoRs | bsin(u)cos(v) | + | E (11)
csin(v) F

The second distance implemented was the bidirectional Haus-
dorff set difference. This metric is much used in image pro-where—7 < u < 7w, —7/2 < v < w/2. The parameters,
cessing tasks [12] [17] and is considered a powerful tool forb, andc define the semi-major, semi-intermediate, and semi-
finding the distance between two sets of points. The Hausminor ellipsoid axes respectively while, E, F') represents



3-D ANALYSIS
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Figure 6: A flow chart of the three-dimensional analysis of an im@ges depicted. The process begins with the segmentation
of the rocks from the image backgroufid) with the help of the plane-fitted range d&fg. Outlines of the rocks are then found

via edge detectiofic). B-splines are next fit to the range ddtg), and from these, angularity is calculated. Ellipsoids are also
fit to the range data using a Powell minimization techni¢dg Finally, the sphericity and ellipsoid fitting error are calculated
using the fitted ellipsoids. The entire process requires less than five minutes per image running in unoptimized Matlab code.

the center point of the ellipsoid. The matric&s, R», and fit was the rock’s sphericity. This value was calculated using

R3 are three-dimensional rotation matrices: the formula given in equation 2, whetg,, d;, andds have
cos(6y)  sin(6) 0] b_een replaced _by the ell?psoid parameters, .am_jc, respec-
Ry = | —sin(f;) cos(f;) O tively. A sphericity of 1 in this case would indicate that the
0 0 1 ellipsoid which was fit to this rock was perfectly spherical,
cos(fs) 0 sin(fy) ] and thus that the rock’s surface itself was an exact approxi-
Ry = 0 1 0 mation of a spherical section. As the sphericity falls farther
—sin(@s) 0 cos(6s) from 1, the rock then takes on a more elongated shape in one
1 0‘ 0 A or another direction. This information, as stated before, can
Ry= | 0 cos(fs) —sin(6s) then pe used .to detgrmine how far the rock might have trav-
0 sin(6;) cos(6s) elled in a flowing fluid [15].

wheref, §», andf; are the final three ellipsoid parameters Spline Fitting —The next step of our three-dimensional shape

specifying the angles of rotation of the ellipsoid about thecharacterization was to calculate a more robust estimate of the
z, y, andz-axes, respectively. It should be noted that theroundness or angularity of the rocks. Our approach for deter-
rotation of the ellipsoid occurs in that order. mining roundness involved obtaining the derviatives and sec-

ond dervivatives in various directions of the data represent-

these was the ellipsoid fitting error, being the averaged SUngerivatives for our n0|sy range data using typical direction-
of the squared distance from each point on the rock to th&tep methods soon proved unreliable. Values were too often
ellipsoid, again using the estimated method for the calculationengered useless by noise, and inaccuracies proved common.
of the closest point on the ellipsoid. This metric provided apgwever, the fitting of b-splines to the data points via tech-
coarse estimate of the angularity of the rock. If the ellipsoidnjques derived in [20] smoothed the surfaces sufficiently that

error was 0, the rock would then be a smooth faced ellipsoidjerivatives could then be calculated in an accurate and ana-
or section thereof. However, as the rock’s surface becomep}mc method.

more textured, as there are more bumps and indentations, the

smooth ellipsoid surface would tend to fit less perfectly. AsB-spline surfaces (Figure 7) are the two-dimensional cousins
such high ellipsoid fitting errors can serve as an indication ofof b-spline curves which, along with Bezier curves, have be-
rough or angular rocks. come extremely important in computer graphics and design

applications. In general the equation for drawing a b-spline
The second piece of information measured using the ellipsoid



To calculate the b-spline surfaces for a rock, we first had
to discern the polygon net which would have produced a b-
spline passing through our actual data points. Assuming we
have amrx s rectangular grid of three-dimensional data points
. : — - and we wish to find the best-fitting x n rectangular polygon

- net which could have produced those data points, we mustin-
1 T vert a certain matrix form of the b-spline equation, namely:

. In this equationD corresponds td&) in Equation 12 and is
e % anr x s x 3 matrix of the three-dimensional coordinates of
the actual rock data pointsB is now anm * n x 3 matrix
containing the coordinates of the polygon net vertic€sis
anr x s X nxm matrix containing the products of the b-spline
Figure 7: An example of a very simple B-spline surface. Thepasis functions)V and /. With some longwinded manipula-
spline is being fit to the stemmed data points using the methoglon it could be shown that Equation 12 and Equation 13 are

described below. indeed equivalent [20].
. So, if C is a square matrix, the inversion process is simple
surface is: )
andB can be found by:
n+1m+1
Qu,w) =3 3" B i Ny (u) My (w) (12) B=C'D (14)
i=1 j=1

However, in the more general case whéds not square, a
Hereu andw are normalized paramtric direction@(u, w)is  solution forB can only be obtained in some estimated sense.
the height of the surface at the particular parametric poiits. The standard inversion process in this case is:
is them x n matrix containing the polygon net vertices, and T LT
Ni x(u) and M; ;(w) are the b-spline basis functions in the B=(C"C)""C"D (15)
respective parametric directions. The CoxdeBoor recursive

formula [20] defines these basis functions: Once the polygon net vertices have been calculated, a b-spline

1 if o <t<m which approximates the shape of the rock surface can then be
Nia(t) = L drawn using Equation 12
w1 0 otherwise gEq '
oy =) Nig—1 () | (@ipk — ) Nig1,k-1(t) The purpose of fitting the splines was not to obtain the sur-
Nl,k(t) - + . L. .
Titk—1 — T Titk — Tit1 faces themselves, but rather their derivatives. There exists a

h in thi . Knot ¢ q dsi relatively simple method of calculating the derivatives of the
wherex In this case 1S a knot vector and corresponas I NGyey yrface in the two parametric directions once the poly-
way to the data points. The development of the knot VeCtorSgon net matrixB has been obtained. In fact the derivatives

will be (.j'SCL.JSSEd below. Cglculanon of.the basis functions ingo pe found by simple partial differentiation. Thus, the sec-
the w direction proceeds via the equation above modulo the

: o ond derivatives with which we are concerned would be:

proper obvious substitions.

uu =St il g N e ;
The general principle behind the construction of b-spline sur- gww((l;’ 1111)))) _ %{mll %Jmhl;f],]]\\r;fk (S;E/[J,l/((z)) (16)
faces involves the definition of a net of polygon vertices. ’ i=1 Zuj=1 ThiTlik o
These vertices are evenly spaced in the two parametric di-
rections, in our case simply the andy axes in the image. Our angularity or roundness measure was based upon these
The height at each net vertex determines the shape of the sugerivatives. We took the average of the two derivatives at
face in and around that region. A surface is fit to this polygoneach point and found the mean of that for all points on the
net via interpolation. Bezier and b-spline surfaces differ onlyrock. Thus for N data points:
in the set of basis functions which are used to make this in-

terpolation, and indeed, the Bezier basis functions, known as 1 ¢ (@ + Q)
the Bernstein basis functions, are actually a degenerate set of Raa = N Z D) (17)
the more general and versatile b-spline basis functions. The =1

constantst and! define the order of the polynomial that is
to be fit to the surface in the andw parametric directions, This metric provides one number which represents the rough-
respectively [20]. ness of the rock’s surface. A score of zero would indicate that
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Figure 8:(a) A hand-drawn image. It was designed to demonstrate the full-spectra of angularity and proceeds from greatest

angularity (shape 1) to least (shape 4b) An image depicting the ellipses that were fit to the four shapes. The results
surrounding the imageg¢), (d), (e), and(f), are of tests conducted on image) using the four two-dimensional metrics
developed in this paper.

the object is perfectly smooth and spherical, for the second5.7935. The measure not only provides a relative ranking,
derivative, which represents the change in the curvature obut also gives an idea of the similarities between shapes. As
the surface, would be 0. As bumps, or rough edges appear onas to be expected by visual inspection, shapes 3 and 4 were
the rock, there will be greater and greater changes in curvaperceived as being much more similar in angularity than, for
ture on average, and thus the rock’s angularity will increasdnstance, shapes 1 and 2.
according to this measure.
The ellipse fitting error measure concurred with the angu-
larity measure, displaying the obvious trend (Figur(elB.
3. RESULTS An ellipse fit to a rounded shape should clearly not create
as great an error as one fit to an extremely angular shape re-
2-D Test Images plete with jagged edges and corners. Thus, shape 4's ellipse

was fit with a total error of only 1.1258 while the ellipse fit

As stated, our method§ were first a.p_plled n two-d|m.en5|on%0 shape 1 exhibited a much greater error of 64.3312. This
to a number of test images specifically hand-designed ta

" . : . measure also provides information about the similarity be-
demonstrate the principles of our metrics. Various |magest

ot ) ween shapes. Once again supporting the angularity measure,
were created emphasizing either the two roundness measure g

. . o SHapes 3 and 4 showed errors more similar to one another
namely the angularity and the ellipse fitting error, or the two

“sphericity” measures, being the eccentricity of the fit eIIipsesthan did shapes 1 and 2.

and the aspect ratio that we dubbed “2-D sphericity.” Sphericity Test -An image specifically created to demon-
Roundness TestA-hand-designed image, along with the re- ;tra’Fe the accuracy (.)f the two sphenClty measures 1s depicted
in Figure 9 along with its analysis. The image was crafted

sults of its analysis, is depicted in Figure 8. The shapes i . :
the image were designed to proceed visually from highly anr-%o proceed from a highly oblong shape to a nearly circular

gular to nearly round. Figure(8) shows that this trend is one. This trenq was accurately perceived by thq 2-D spheric
. . Co ty measure (Figure @)). The measure, essentially a mea-
reflected in the angularity measure. The high incidence o , .
i X . ; . sure of the shape’s aspect ratio, was a mere 0.19332 for the
sharp corners in the first shape combined with the existenc

of long flat regions makes for a very widespread distributionﬁ“n and narrow shape 1, but reached 0.95204 for shape 4.

. . . This latter number being so near to one indicated that shape

of inscribable angle values. Thus, the angularity measure wa . :
: : was almost perfectly circular. The measure determined not
driven up to 58.7734. Shape 1 on the other hand consists o ) . , i
. - only a relative ranking of the shape’s 2-D sphericities, but
much smoother curves, most of which have similar degrees L
L o . .~ also a concrete measure of their similarities to one another.

of curvature, granting it a very narrow distribution of inscrib-

. . F‘he first two shapes are much more alike to each other than
able angle values and thus a relatively low angluarity score o
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Figure 9:(a) A hand-drawn image. It was designed to demonstrate the full-spectra of two-dimensional sphericity and proceeds
from least sphericity (shape 1) to greatest (shapg$).This image depicts the ellipses that were fit to the four shapes. The
results surrounding the imagds,), (d), (e), and(f), are of tests conducted on the ima@e using the four two-dimensional
metrics developed in this paper.

shape 1 and shape 2 are separated from each other by on ble 1: The two-dimensional angularity results measured on

2.4 percent of the measure’s range, while shape 2 is separat four images shown in Figure 10.
from shape 3 by over 50 percent of the measure’s range. 2-D Angularity

— [[ROCK1[ ROCK 2] ROCK 3

VIEW 1 23.05 13.40 10.39
VIEW 2 14.71 13.93 11.71
VIEW 3 17.42 16.68 12.78
VIEW 4 15.65 10.34 9.60

they are to the final two, and this is indicated by the fact thal,[g‘e
£

The eccentricity of the fit ellipses also gave an indication of
the desired trend (Figurg8)). Shape 1 exhibited alow 0.121
while the circular shape 4 exhibited a much greater 0.89432.
As with the other measures, similarity between shapes can be
determined using the eccentricity of the ellipses. Shape 1 and
shape 2 are separated from each other by only 2.7 percent of

the measure’s range while shape 2 and shape 3 are separal ] . . : -
by almost 39 percent of the range. Tﬁsﬂﬂe 2: The two-dimensional ellipse fitting error results

measured on the four images shown in Figure 10.

Consistency Across Views 2-D Ellipse Fitting Error

—— [[ROCK1] ROCK 2| ROCK3
VIEW 1 34.16 13.71 5.98
VIEW 2 13.36 10.65 3.60
VIEW 3 17.31 15.98 3.72
VIEW 4 10.34 5.65 1.89

After demonstrating the measures on synthetic images, we
applied them to real world images. In this experiment, we
wished to determine the behavior of the measures for images
of the same set of rocks taken from different viewpoints.

For this task, we used a series of images (Figure 10) contain-

ing three rocks found in JPL's Mars Yard taken from different

viewing angles. Steroe pairs of images were taken, and theréngular of the three, followed by rock 2 and then rock 3.
fore range data was available upon which three-dimensiondBoth of the two-dimensional measures, as well as the three-
techniques could also be app“ed We present here 0n|y thgimensional angulal‘ity measure, exh|b|ted th|S trend Wh|Ch iS
results of the three roundness-type measures. evident from visual inspection.

Furthermore, what can be seen in the tables is that the mea-
What can be observed from Tables 1, 2, and 3 is that thesgyres were able to identify this trend regardless of the angle
measures determine trends in angularity among real worlgrom which the image was taken and in what position or order
images. All measures indicate that rock 1 was the mosthe rocks were situated. Rock 1 is clearly much more angu-



Figure 10: These four images were taken using two stereo-mounted digital cameras in the JPL Mars yard. All four images
depict the same three rocks, each image differing only in camera angle. Tests were conducted on these four images to test the
consistency of the developed metrics. Visually, the rocks proceed in angularity from greatest (rock 1) to least (rock 3).

our final experiment, we examined a number of Martian
ages returned by the Sojourner rover to determine how well
our measures could perform on them. The analysis of two

3-D Angularity such images is described in detail here. A summary of the
— [ ROCK1] ROCK2[ ROCK3 results for seven images is provided in the next section.

VIEW 1 61.92 24.97 2.16
VIEW 3 11.06 6.08 1.34
VIEW 4 0.95 0.32 0.24

. . . |
Table 3: The three-dimensional angularity results measure#:1
on three of the four images shown in Figure 10.

Image 112469255101 F¥he image in Figure 1th) is of a por-
tion of the Martian Rock Garden near the Pathfinder landing
site and features the noted rocks Flat Top, labelled 3, Little
Flat Top, labelled 4, and Stimpy, labelled 5. Flat Top and
Little Flat Top are both relatively smooth and box-like in ap-
pearance while Stimpy is much rougher and more angular in
xture, though nearly circular in two-dimensional shape in
is particular image.

lar than the other two in every view and with regard to every
measure while rock 3 is always the least angular.

One of the biggest disadvantages of the measures which ca{ﬁ
be seen in Table 3 is the variability between images viewed

from different angles. V.Vh."e thg techmques can r'ank Var-girst examining the two-dimensional analysis of these three
ous rocks and shapes within a single image according to their _ . | ks it i hat th di ional d
relative angularity, there is a great deal of variation in the ab_partlcu ar rocks, It Is seen t at the tWO-. 'mensional round-
solute values of tr'1ese measures between imaqes taken frongSS measures, the angularity and the ellipse fitting error, per-

. L : 9 €N T med reasonably well. As can be seen from the segmenta-
different angles. However, it is interesting to note that in this

. . . “tion image in Figure 1(b), Stimpy (rock 5) has by far the
exar?plle the m?l_?fl:r.es ;)ftgn rtemaln 'sta_ll_)lilrelftlltvely fré)m Irr;'smoothest outline according to the two-dimensional image,
age 1o image. That Is, for Instance, in 'able L 1t canbe cals, 4 4 jiq angularity measure is a mere 12.1069. (Figure

culated that from angle 2 rock 2 is 94.75 percent as angula_rll(c)) Flat Top (rock 3) and Little Flat Top (rock 4), on the

as rock 1 while rock 3 is 79.65 percent as angular as rock 1Other hand, have very jagged outlines and so their scores are

From angle 3, it can be shown that rock 2 is 95.74 percenFnore than double that of Stimpy. The ellipse fitting error re-
as angular as rock 1 and rock 3 is 73.35 percent as angul%r

. - Its (Fi 1 isplay th lati king. Th
as rock 1. The close correlation of these results may |nd|cat%;ufe(s lagrlérixtgzedllj?::%peﬁir?grizef;ita \I/\\:i?hrgiénp%/ me:-
that in some cases each rock is identified with similar rel-suring only 2.87 and Little Flat Top top[:,)ing the list with a
. . Ut uch greater 9.8382. This result indicates the squarish out-
values of the measures are fluctuating. Due to this fact, it i$ihes of the two Flat Tops which created large errors when

possible that the variability is being caused by some systemt—hese ‘square pegs’ were fit with ‘round holes.” It is interest-

atic variability among the' images themselves. For mstance,n to note that these results are in line with the characteriza-
deeper shadows in some images may make rocks appear to t)

more angular and recessed than they would from other Iight-I ns provided n [2].

ing angleg. Rocks that are not symmetric would be expe_cteei-he two-dimensional sphericity measures (Figure&]and
to have different responses to shape measures when viewgqg)) also concurred in their findings in regard to the three
from different angles, and this may account for the variability qcks. Stimpy most resembles a circle as is shown by its
noted here. Despite this disadvantage, the measures providggsater score in both the eccentricity measure and the spheric-
a method by which the relative roundness of the rocks withiniyy, measure. Little Flat Top on the other hand was found at the
an image can be catalogued. bottom of the rankings due to its short, oblong appearance.
Flat Top was so nearly square that its aspect ratio and the ec-
Close Analysis of Two Sojourner Images centricity of the ellipse that was fit to it were much closer to



ANGULARITY
Rock5 12.1069 5:
Rockl 19.787 1
Rock2 21.0202 2:
Rock3 25.391 j:
F- I
(a) 11246925510l (b) Segmentation (c) Fit Ellipses | "™ 28.1545(d) T T
ECCENTRICITY ELLIPSE ERROR SPHERICITY
Rock4 0.48783 4: Rockl 2.0791 1:] Rock4 0.25351 43
Rock2 0.57742 2: Rock2  2.6633 Zj Rock2 0.57298 2:
Rockl 0.59545 ;% Rock5  2.87 zj: Rock3 0.80551 z%
Rock3 0.77093 5: Rock3  9.6565 4 l Rock5 0.84184 1:
Rock5  0.83962 Rock4  9.8382 Rockl 0.87706
(e) 0 0.5 1 (f) 0 5 10 (g) 0 0.5 1
2-D ANALYSES
3-D ANALYSES
ELLIPSOID ERRO ANGULARITY SPHERICITY
Rockl 2.0514 1: Rockl 0.13422 1y Rockl 0.40484 L S
Rock? 2.3779 2 Rock2 0.4434 2L Rock3 0.41911 e
Rockd  4.9046 4: Rock4 0.64514 e Rock4 0.45055 ::‘
Rocka  5.2935 z% Rock3 1.6751 : Rock5 0.45449 2:
Rock5 5.263 Rock5 2.7338 - Rock2 0.53127
(hy © 2 4 6 (i ° 1 2 3 G) Y 0.5 1

Figure 11: The first image shown hef®) is taken from the Martian Rock Garden and features the rocks Flat Top, Little Flat
Top, and Stimpy, rocks 3, 4, and 5, respectively. The second irflapis the adapted result of the rock segmentation procedure,
and the third imagéc) shows the ellipses fit to the rocks. From the results surrounding the irtdpe, (j), it can be seen that
the metrics were able to properly rank the three named rocks according to the seven different properties measured.

mimicking the round Stimpy than the oblong Little Flat Top. to three-dimensional sphericity which takes into account the

spherical nature of the rock surface for which data is avail-
In three dimensions, the measures also gave satifying resultgple.

The three-dimensional roundness measure, as was stated, at-

tempts to measure fine scale features and roughnesses in tleage 11246924795 The image in Figure 1) was also
texture of the rock. As such, the relatively smooth Flat Topstaken in the Martian Rock Garden and features the rocks
exhibited lower three-dimensional angularity scores than thdamm-Bamm, labelled rock 5 here, and Flute Top, labelled
much rougher Stimpy whose peak is cracked and broken (Figrock 6. Flute Top is a broad, low rock nearly rectangular in
ures 11h) and 11j)). Finally, the sphericity score again shape with a pocked, fluted surface. Bamm-Bamm on the
reflects the round, ballish nature of Stimpy and the squarother hand is a taller, more spherical rock with a highly pitted
ish box-like nature of the Flat Tops. Stimpy has the highestsurface. The other rock that we will include in our discus-
sphericity score of the three (Figure (&)). sion, we believe is unnamed. Rock 4 appears to be of a more

oblong shape with a realtively smooth surface.
It should be remarked here that the two-dimensional mea-

sures and the three dimensional measures often do not draBeginning with the two-dimensional analysis, it can be seen
the same conclusions. This is not unexpected as the twithat the roundness measures performed accurately. The out-
techniques are working with different data and using dif- line of Flute Top with its almost 90 degree corner, its two
ferent criteria. The two-dimensional angularity score ratesflat sides (due to image edge effects unfortunately), and its
the roughness of the outline of the rock segmented from th@ne rounded arc scored much higher on both the angularity
backgroundimage while the three-dimensional score rates thmeasure (Figure 12)) and the ellipse fitting error measure
roughness of the surface of the rock gleaned from stereofFigure 1Zf). Bamm Bamm'’s outline contains a number of
graphically created range data. Two-dimensional sphericityprotrusions which gave it the second highest rankings of the
is purely a measure of how circular the outline is opposedhree rocks. Rock 4’s outline has no real corners and is rela-
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Figure 12: The first image shown hefe) is taken from the Martian Rock Garden and features the rocks Bamm-Bamm and
Flute Top, rocks 5 and 6, respectively. The second im&ges the adapted result of the rock segmentation procedure, and the
third image(c) shows the ellipses fit to the rocks. The results surrounding the imédgs; (j), show that the metrics can be
used rank the rocks in the image according to the desired properties.

tively smooth, and so it was correctly ranked lower than thethat we wished to measure, but from the fact that we were
other two rocks in both angularity and ellipse fitting error. attempting to fit an ellipsoidal surface to a box-like one. In
The sphericity measures in two dimensions (Figuretel2 this respect, the ellipsoid fitting error may at times also be an
and 12g)) further resulted in expected relatives values, with indicator of sphericity. Aside from this anomaly, the ellipsoid
Flute Top being rated most oblong of the three rocks. fitting error did rank Rock 4 below Bamm-Bamm which was

indeed a success, Bamm-Bamm being the rougher of the two.
In three-dimensions, the textures of the three rocks are

categorized well by the angularity measure (Figuréil)2  Finally, upon examining the sphericity measure in three-
Bamm-Bamm, as was said before, has very deep scars upaimensions (Figure 13)), it is seen that Bamm-Bamm re-

its surface and so was given the highest angularity scoregeived the highest score. Since it is the most spherical rock
0.6977. Flute Top was a close second, its namesake flutgwesent, this was to be expected. Rock 4 on the other hand
giving it a considerable score of 0.59789. Rock 4, of coursejs noticably oblong, or football-shaped, and as such scored a
is generally smooth, and so its angularity was rated at a mucmuch lower 0.32505 for this measure.

lower 0.16873.

The Ellipsoid fitting errors (Figure 1(h)) for this image bear Larger Scale Experimentation

a moment’s hesitation. It will be noticed that Flute Top is Having shown that the techniques perform well on the real
apparently ranked out of order by this measure. The reasoworld Mars images, the next task was to determine how the
for this is that the ellipsoid fitting error can best be used as aneasures performed across a number of images. Figure 13
measure of angularity if it is assumed that a rock is in generatlepicts seven of the Sojourner images that were experimented
a spheroid. Since the broad, low Flute Top is not a spheroidypon and Tables 4 and 5 present the summarized results of
it received error not only from the small surface deviationstrials conducted on the seven selected images. A number of
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Figure 13: The seven Sojourner images that we chose to analyze are depicted. The rocks used were randomly chosen and
numbered for convenience. The images are of well-known areas in the Rock Garden near to Pathfinder’s landing site.

comments are worth making with regards to these results. appears in two images as rock 28 and rock 33, and these two
rocks are found right beside each other when the rocks are
First, the results of these trials appear logical when examineganked in order of increasing 3-D angularity.
visually. For instance, Bamm Bamm (rock 18) appears much
rougher than rock 20. This can also be seen in the results by
comparing Bamm-Bamm’s 0.609397 three-dimensional an- 4. CONCLUSIONS
gularity score to rock 20’s much lower 0.386075, a ranking
also indicated by the two rocks’ ellipsoid fitting error results, In attempting to develop a technique by which an automated
two-dimensional angularity results, and ellipse fitting errorrover could quantifiably classify the shape of a rock, seven
results. Other roundness comparisons could also be maddifferent metrics were designed and implemented. In two di-
such as between rock 10 and rock 15 or between rock 2Bnensions, a novel angularity measure was developed which
and rock 3, which would also show the validity of these mea-was augmented by a second measure, the ellipse fitting error.
sures. Sphericity comparisons too, such as between rock 20hese two combined were able to rank the relative round-
and rock 34 or between rock 25 and rock 27, show that thishess of the rocks in an image each with a single quantifiable
measure is capable of providing an accurate estimate of thealue. Two metrics were also developed for two-dimensional
property it was designed to measure. “sphericity” which both provided quantifiable information
about a rock’s shape. In three dimensions, b-splines were
Also, even though, as was previously discussed, there mafit to stereographic range data, and the second derivatives
sometimes be variation in the absolute magnitude of the meaof these surfaces were calculated in order to obtain a single
sures from image to image due to uncontrolled conditionsyalue which characterized the roughness of a rock’s surface.
many other times the measures are able to translate betwedamis measure, too, was augmented by a measure of the er-
two images. For instance, Bamm-Bamm appears in two difror incurred when fitting an ellipsoid to the range data which
ferentimages as both rock 13 and rock 18. Even though thgielded another method by which rock shape could be catego-
same exact portion of the rock does not appear in both imageszed. Finally, the approximate three-dimensional sphericity
and as such the texture of the rock is not exactly the same, thef the rock was calculated by using the axes of the ellipsoid
three-dimensional angularity measures are very similiar (seevhich most closely approximated the data, giving one final
rankings in Table 5). Table 5 provides another example ofpiece of information about the rock’s morphology.
this when we look at the two entries for Flat Top. Flat Top



Table 4: This table shows the results of experiments conducted on the seven selected Martian Rock Garden images. A total of
38 rocks were chosen, and all seven metrics developed in this paper were applied to each rock.

[ Rock | Eccentricity | Ellipse Error | 2-D Spher.| 2-D Angularity || Ellipsoid Error | 3-D Spher.| 3-D Angularity ||
1 0.77 4.77 0.94 25.36 2.25 0.35 0.42
2 0.61 10.83 0.82 23.38 1.89 0.68 0.66
3 0.76 7.68 0.84 19.25 2.40 0.39 0.82
4 0.60 1.71 0.69 17.53 1.42 0.48 0.31
5 0.60 1.41 0.86 18.62 2.08 0.34 0.11
6 0.59 2.65 0.75 22.72 1.34 0.39 0.04
7 0.50 0.30 0.54 32.23 1.22 0.28 0.03
8-Geordi 0.70 1.85 0.79 19.24 0.89 0.44 0.20
9 0.39 7.95 0.64 39.55 3.02 0.33 0.14
10 0.69 3.92 0.92 18.53 2.86 0.34 0.42
11 0.52 0.72 0.69 29.09 1.53 0.31 0.10
12 0.87 1.44 0.87 16.08 1.30 0.33 0.17
13-Bamm-Bamm 0.99 417 1.00 16.85 1.79 0.35 0.70
14-Flute Top 0.68 11.66 0.86 25.63 2.21 0.33 0.60
15 0.71 1.30 0.79 20.78 1.41 0.30 0.15
16 0.66 18.05 0.70 25.41 2.55 0.40 0.32
17 0.54 13.42 0.76 22.14 6.22 0.56 2.63
18-Bamm-Bamm 0.76 13.54 0.92 29.21 1.92 0.41 0.61
19 0.70 1.07 0.76 16.69 3.75 0.37 0.22
20 0.63 7.45 0.61 19.91 1.80 0.30 0.39
21 0.49 0.39 0.58 23.67 2.07 0.43 0.47
22 0.52 1.38 0.70 17.59 3.44 0.40 0.19
23 0.59 1.92 0.72 18.35 3.40 0.39 0.18
24-Garrak 0.51 7.75 0.65 11.20 4.21 0.34 1.93
25 0.82 8.61 0.93 24.36 1.98 0.25 0.45
26 0.60 2.08 0.88 19.79 2.05 0.40 0.13
27 0.58 2.66 0.57 21.02 2.38 0.53 0.44
28-Flat Top 0.77 9.66 0.81 25.39 5.22 0.42 1.68
29-Lil Flat Top 0.49 9.84 0.25 28.15 4.90 0.45 0.65
30-Stimpy 0.84 2.87 0.84 12.11 5.26 0.45 2.73
31 0.84 2.30 0.78 25.13 0.89 0.47 0.08
32 0.83 2.90 0.96 19.77 0.99 0.35 0.14
33-Flat Top 0.97 12.94 0.97 28.30 2.74 0.51 1.32
34 0.46 4.15 0.46 25.79 2.54 0.46 0.34
35 0.48 2.87 0.48 18.76 5.18 0.45 0.45
36 0.70 3.84 0.52 31.61 1.59 0.28 0.08
37-Grommit 0.97 3.97 1.00 10.29 2.73 0.33 2.98
38-Mohawk 0.75 4.63 0.77 23.28 2.99 0.38 0.77




Table 5: The 38 Martian Rock Garden rocks from the seve
selected images are here ranked in order of increasing 3-

angularity.

|| Rock | 3-D Angularity ||

7
6
31
36
11
5
26
9
32
15
12
23
22
8
19
4
16
34
20
10
1
27
25
35
21
14
18
29
2
13
38
3
33
28
24
17
30
37

0.029
0.044
0.080
0.083
0.098
0.109
0.134
0.136
0.144
0.146
0.169
0.184
0.191
0.202
0.217
0.312
0.315
0.341
0.386
0.416
0.422
0.443
0.450
0.452
0.473
0.598
0.609
0.645
0.657
0.698
0.769
0.822
1.321
1.675
1.929
2.628
2.734
2.977
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&e Remote Exploration and Experimentation Project and by
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